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This paper investigates dynamic stability of an axially accelerating viscoelastic beam

undergoing parametric resonance. The effects of shear deformation and rotary inertia

are taken into account by the Timoshenko thick beam theory. The beam material obeys

the Kelvin model in which the material time derivative is used. The axial speed is

governing partial-differential equations are derived from Newton’s second law, Euler’s

angular momentum principle, and the constitutive relation. The method of multiple

scales is applied to the equations to establish the solvability conditions in summation

and principal parametric resonances. The sufficient and necessary condition of the

stability is derived from the Routh–Hurvitz criterion. Some numerical examples are

presented to demonstrate the effects of related parameters on the stability boundaries.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering devices, such as band saws and power transmission belts, can be modeled as an axially moving beam,
which is a typical gyroscopic continuum. Due to initial, external or parametric excitations, axially moving beams undergo
transverse vibration that may limit the devices’ applications. Therefore, there have been many analytical and numerical
investigations on transverse vibration of axially moving beams, for examples, Chen et al. [1], Gaith and Müftü [2],
Hedrih [3], Wang et al. [4], Yang et al. [5].

The time-dependent axial speed may serve as a parametric excitation. Within linear models, dynamic stability of axially
accelerating beams is a crucial problem that has been extensively analyzed. Öz and Pakdemirli [6] and Öz [7] applied the
method of multiple scales to calculate analytically the stability boundaries of an axially accelerating beam under different
boundary conditions. Parker and Lin [8] adopted a 1-term Galerkin discretization and the perturbation method to study
dynamic stability of an axially accelerating beam subjected to a tension fluctuation. Özkaya and Öz [9] used an artificial
neural network algorithm to determine stability boundary of an axially accelerating beam. Suweken and Horssen [10]
applied the method of multiple scales to a discretized system via the Galerkin method to study the dynamic stability of an
axially accelerating beam. Pakdemirli and Öz [11] employed the method of multiple scales to analyze the stability in the
resonances involved up to four modes. In addition to the investigations on elastic beams, there have been studies focusing
on viscoelastic beams, because viscoelascity is an effective approach to model the damping mechanism (Park [12]). Chen
et al. [13] applied the averaging method to a discretized system via the Galerkin method to present analytically the stability
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boundaries of axially accelerating viscoelastic beams. Chen and Yang [14] applied the method of multiple scales without
discretization to obtain analytically the stability boundaries of axially accelerating viscoelastic beams. In their works, the
Kelvin model containing the partial time derivative was used to describe the viscoelastic behavior of beam materials.
Mockensturm and Guo [15] convincingly argued that the Kelvin model generalized to axially moving materials should
contain the material time derivative to account for the energy dissipation in steady motion. Actually, the material time
derivative was also employed in the Kelvin model of axially moving materials by Marrynowski and Kapitaniak [16],
Marrynowski [17], and Marrynowski [18], as well as in the three-parameter viscoelastic model by Marynowski and
Kapitaniak [19]. Revisiting the problem addressed by Chen and Yang [4] by using the material time derivative in the Kelvin
model, Ding and Chen [20] applied the method of multiple scales to demonstrate that the modes not involved in
summation resonance have no effects on the stability, and solved the governing equation via the finite difference scheme to
validate the analytical results. Chen and Wang [21] developed an asymptotic perturbation approach to analyze dynamic
stability of an axially accelerating viscoelastic beams and used a differential quadrature scheme to check the analytical
results via solving the governing equation numerically. If the motion amplitude is large, the nonlinearity should be taken
into account. In transverse nonlinear vibration of axially accelerating elastic or viscoelastic beams, the straight equilibrium
configuration may becomes unstable and bifurcate into periodical steady-state responses that can be predicted by the
approximately analytical methods (Parker and Lin [8], Öz et al. [22], Chen and Yang [23]).

All above-mentioned researchers assumed the beams under their consideration to be slender so that the beams can be
described by the Euler–Bernoulli model. If a beam is thick, then the effects of shear deformation and rotary inertia, which
are neglected in the Euler–Bernoulli model, should be taken into account. Recently, Ghayesh and Balar [24] and Ghayesh
and Khadem [25] respectively treated the effects of shear deformation and rotary inertia on nonlinear parametric vibration
of axially accelerating viscoelastic beams. The Timoshenko [26] beam theory can account for the effects of both shear
deformation and rotary inertia. Although the Timoshenko beam is extensively studied (for example, Challamel [27], Mei
et al. [28], Arboleda-Monsalve et al. [29]), the works on axially moving Timoshenko beams are rather limited. Simpson [30]
was the first to derive the governing equations for the axially moving thick beam based on the Timoshenko model, but did
not consider the axial tension and presented no numerical results. Chonan [31] studied the steady-state response of a
moving Timoshenko beam by applying Laplace transform method. Lee et al. [32] used frequency-dependent spectral
element matrix to compute natural frequencies, critical speeds and modal functions of axially moving Timoshenko beams.
Tang et al. [33] applied the complex modal analysis approach to calculate natural frequencies, modes and critical speeds of
axially moving Timoshenko beams. Based on the modal solutions, Tang et al. [34] determined the transverse nonlinear
responses of axially moving Timoshenko beams to weak and strong external excitations via the method of multiple scales.
To authors’ knowledge, there have been no investigations on the axially moving viscoelastic Timoshenko beam, while some
researchers, such as Nakao et al. [35], Kocatrk and Simsek [36], Hilton [37], worked on viscoelastic Timoshenko beams
without the axial motion.

To address the lacks of research in the aspect, the present investigation focuses on dynamic stability of axially
accelerating viscoelastic Timoshenko beams undergoing parametric resonance. The governing equation of transverse
motion of axially accelerating viscoelastic Timoshenko beams consists of two partial-differential equations that cannot be
decoupled, while the governing equations of axially moving elastic Timoshenko beams (Tang et al. [33]) or stationary
viscoelastic Timoshenko beams (Nakao et al. [35]) can be decoupled into two independent equations. The method of
multiple scales is applied to determine stability boundary in summation parametric resonance and principal parametric
resonance. The approach, as well as the modal solutions to the generating autonomous linear system, can be used to
investigate nonlinear vibration of axially moving viscoelastic Timoshenko beams

The present paper is organized as follows. Section 2 derives the mathematical model from the physical laws and the
constitutive relation. Section 3 employs the method of multiple scales to analyze the governing equations under the
prescribed boundary conditions. Section 4 establishes the stability conditions in the summation parametric resonance and
the principal parametric resonance. Section 5 presents some numerical examples to demonstrate the effects of the related
parameters on the stability boundaries. Section 6 ends the paper with concluding remarks.

2. Problem formulation

A uniform axially moving Timoshenko beam, with density r, cross-sectional area A, area moment of inertia of the cross-
section about the neutral axis J, initial axial tension P, travels at the axial transport time-dependent speed G(T) between
two simple supports separated by distance L. When the effects of rotary inertia and shear deformation are considered, the
bending vibration can be described by two variables dependent on axial coordinate X and time T, namely, transverse
displacement V(X,T) and the slope of the deflection curve due to bending deformation alone F(X,T). The physical model is
shown in Fig. 1.

Application of the Newton second law in the transverse direction yields

rAðV ;TT þ 2GV ;XT þ
_GV ;X þG2V ;XXÞ ¼ PV ;XX � Q ;X (1)

where Q(X,T) denotes the shear force. The Euler angular momentum principle yields

rJF;TT ¼ M;X � Q (2)
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Fig. 1. The physical model of an axially moving Timoshenko beam.
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where M(X,T) denotes the bending moment defined by

MðX; TÞ ¼

Z
A

ZsðX; Z; TÞdA (3)

for principal plane of bending ZX-plane and normal stress s(X,Z,T).
The beam is described by the Timoshenko model with shape factor k. The shear deformation is given by

yðX; TÞ ¼ FðX; TÞ � V ;X (4)

The viscoelastic material of the beam obeys the Kelvin model with the constitutive relations

s ¼ E½eþ aðe;T þGe;XÞ� (5)

t ¼ G½yþ aðy;T þ Gy;XÞ� (6)

where t is the shear stress, e is the axial strain, E is the modulus of elasticity, G is the shearing modulus, and a is the
viscosity coefficient. For small deflections, the geometrical relation is

e ¼ ZF;X (7)

Eqs. (3), (5) and (7) lead to

M ¼ EJ½F;x þ aðF;XT þGF;XXÞ� (8)

From Eqs. (4) and (6), Q=kAt gives

Q ¼ kAG½ðF� V ;XÞ þ aðF;T � V ;XT þ GF;X � GV ;XXÞ� (9)

Substitution of Eqs. (8) and (9) into Eqs. (1) and (2) yields the governing equations of axially moving viscoelastic
Timoshenko beam

rA½V ;TT þ 2GV ;XT þ
_GV ;X � ðP � G2

ÞV ;XX � ¼ �kAG½ðF;X � V ;XXÞ þ aðF;TX � V ;XXT þ GF;XX �GV ;XXXÞ� (10)

rJF;TT ¼ EJ½F;XX þ aðF;XXT þ GF;XXXÞ� � kAG½ðF� V ;XÞ þ aðF;T � V ;XT þ GF;X � GV ;XXÞ� (11)

The boundary conditions for the simple supports at both ends are

V jX¼0 ¼ 0;V jX¼L ¼ 0;MjX¼0 ¼ 0;MjX¼L ¼ 0 (12)

Introduce the dimensionless variables, coordinates, and parameters

v ¼
V

eL
;j ¼ F

e
; x ¼

X

L
; t ¼ T

ffiffiffiffiffiffiffiffiffiffiffi
P

rAL2

s
; g ¼ G

ffiffiffiffiffiffiffi
rA

P

r
;

k1 ¼
AG

kP
; k2 ¼

J

AL2
; k2

f ¼
EJ

PL2
;Z ¼ a

e

ffiffiffiffiffiffiffiffiffiffiffi
P

rAL2

s
(13)

where e is a dimensionless small number accounting for the smallness of the beam bending deformation and the viscosity
coefficient. Dimensionless parameter k1 accounts for the effects of shear deformation, k2 represents the effects of the rotary
inertia, and kf denotes the stiffness of the beam. Using the dimensionless variables, coordinates, and parameters defined in
Eq. (13), Eqs. (10) and (11) can be cast into the dimensionless form

v;tt þ 2gv;xt þ ðg2 � 1Þv;xx þ g;tv;x þ k1ðj;x � v;xxÞ ¼ �ek1Zðj;xt � v;xxt þ gj;xx � gv;xxxÞ (14)

k2j;tt � k2
f j;xx þ k1ðj� v;xÞ ¼ ek2

f Zðj;xxt þ gj;xxxÞ � ek1Zðj;t � v;xt þ gj;x � gv;xxÞ (15)

It should be remarked that Eqs. (14) and (15) cannot decoupled, and the coupling differentiate the axially accelerating
viscoelastic Timoshenko beams from axially moving elastic Timoshenko beams (Tang et al. [33]) and stationary viscoelastic
Timoshenko beams (Nakao et al. [35]). Eqs. (8), (12) and (13) yield the dimensionless boundary conditions

vjx¼0 ¼ 0;vjx¼1 ¼ 0;

j;xjx¼0 þ eZðj;xtjx¼0 þ gj;xxjx¼0Þ ¼ 0;j;xjx¼1 þ eZðj;xtjx¼1 þ gj;xxjx¼1Þ ¼ 0 (16)



ARTICLE IN PRESS

L.-Q. Chen et al. / Journal of Sound and Vibration 329 (2010) 547–565550
3. Multi-scale analysis

In the present investigation, the axial speed is supposed to be a small simple harmonic variation about the constant
mean speed,

gðtÞ ¼ g0 þ eg1 sinðotÞ (17)

where g0 is the mean axial speed, and eg1 and o are respectively the amplitude and the frequency of the axial speed
variation, all in the dimensionless form.

v;tt þ 2g0v;xt þ ðg2
0 � 1Þv;xx þ k1ðj;x � v;xxÞ

¼ �e½g1o cosðotÞv;x þ 2g1 sinðotÞv;xt þ 2g0g1 sinðotÞv;xx � k1Zðj;xt � v;xxt

þg0j;xx � g0v;xxxÞ� � e2½g2
1 sin2

ðotÞv;xx þ k1g1Z sinðotÞðj;xx � v;xxxÞ� (18)

k2j;tt � k2
f j;xx þ k1ðj� v;xÞ ¼ eZ½k2

f ðj;xxt þ g0j;xxxÞ � k1ðj;t � v;xt þ g0j;x � g0v;xxÞ�

�e2g1Z sinðotÞðk1j;x � k1v;xx � k2
f j;xxxÞ (19)

The method of multiple scales will be employed to solve coupled Eqs. (18) and (19). Suppose that the uniform
approximate solutions to Eqs. (18) and (19) are

vðx; t; eÞ ¼ v0ðx; T0; T1Þ þ ev1ðx; T0; T1Þ þ oðeÞ (20)

jðx; t; eÞ ¼ j0ðx; T0; T1Þ þ ej1ðx; T0; T1Þ þ oðeÞ (21)

where T0=t and T1=et are respectively the fast and slow time scales. Substitution of Eqs. (20) and (21) and the following
relationship

q
qt
¼

q
qT0
þ e q

qT1
þ oðeÞ; q

2

qt2
¼

q2

qT2
0

þ 2e q2

qT0qT1
þ oðeÞ (22)

into Eqs. (18) and (19) and then equalization of coefficients of e0 and e1 in the resulting equations lead to:

v0;T0T0
þ 2g0v0;xT0

þ ðg2
0 � 1Þv0;xx þ k1ðj0;x � v0;xxÞ ¼ 0 (23)

k2j0;T0T0
� k2

f j0;xx þ k1ðj0 � v0;xÞ ¼ 0 (24)

v1;T0T0
þ 2g0v1;xT0

þ ðg2
0 � 1Þv1;xx þ k1ðj1;x � v1;xxÞ

¼ �2v0;T0T1
� g1o cosðotÞv0;x � 2g0v0;xT1

� 2g1 sinðotÞv0;xT0

�2g0g1 sinðotÞv0;xx � k1Zðj0;xT0
� v0;xxT0

þ g0j0;xx � g0v0;xxxÞ (25)

k2j1;T0T0
� k2

f j1;xx þ k1ðj1 � v1;xÞ ¼ �2k2j0;T0T1
þ k2

f Zðj0;xxT0
þ g0j0;xxxÞ

� k1Zðj0;T0
� v0;xT0

þ g0j0;x � g0v0;xxÞ (26)

3.1. Modal analysis on order e0 equation

The two e0-order Eqs. (23) and (24) can be decoupled into

v0;T0T0
þ 2g0v0;x0T0

þ ðg2
0 � 1Þv0;xx �

1

k1
ðk1k2 þ k2 þ k2

f � k2g2
0Þv0;xxT0T0

�
k2

f

k1
ð1þ k1 � g2

0Þv0;xxxx þ
k2

k1
ðv0;T0T0T0T0

þ 2g0v0;xT0T0T0
Þ � 2

k2
f

k1
g0v0;xxxT0

¼ 0 (27)

j0;T0T0
þ 2g0j0;x0T0

þ ðg2
0 � 1Þj0;xx �

1

k1
ðk1k2 þ k2 þ k2

f � k2g2
0Þj0;xxT0T0

�
k2

f

k1
ð1þ k1 � g2

0Þj0;xxxx þ
k2

k1
ðj0;T0T0T0T0

þ 2g0j0;xT0T0T0
Þ � 2

k2
f

k1
g0j0;xxxT0

¼ 0 (28)

Substitution of Eqs. (20), (21) and (22) into Eq. (16) and then equalization of coefficients of e0 in the resulting equations
lead to

v0jx¼0 ¼ 0;v0jx¼1 ¼ 0;j0;xjx¼0 ¼ 0;j0;xjx¼1 ¼ 0 (29)

The solutions to Eqs. (27) and (28) can be assumed as

v0ðx; tÞ ¼
X1
n¼1

fnðxÞe
ionT0 þ cc j0ðx; tÞ ¼

X1
n¼1

WnðxÞe
ionT0 þ cc (30)
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where fn and Wn are the nth mode function, on are the nth natural frequency of the generating autonomous linear system
and cc stands for complex conjugate of the proceeding terms.

Substitution of Eq. (30) into (27) and (28) respectively yields,

k2

k1
fno4

n � 2i
k2

k1
g0fn

0 o3
n þ

1

k1
ðk2 þ k2

f þ k1k2 � k2g2
0Þfn

00 � fn

� �
o2

n

þ2ig0

1

k1
ðk1fn

0 � k2
f f

000

n Þon þ ðg2
0 � 1Þfn

00 þ
k2

f

k1
ð1þ k1 � g2

0Þf
0000

n ¼ 0 (31)

k2

k1
Wno4

n � 2i
k2

k1
g0Wn

0 o3
n þ

1

k1
ðk2 þ k2

f þ k1k2 � k2g2
0ÞWn
00 � Wn

� �
o2

n

þ2ig0

1

k1
ðk1Wn

0 � k2
f W
000

n Þon þ ðg2
0 � 1ÞWn

00 þ
k2

f

k1
ð1þ k1 � g2

0ÞW
0000

n ¼ 0 (32)

where the prime denotes the derivation with respect to dimensionless spatial variable x. Substitution of Eqs. (29) and (30)
into Eq. (23) respectively yields

fnjx¼0 ¼ 0; ½ðg2
0 � k1 � 1Þfn

00 þ 2ig0onf0�jx¼0 ¼ 0;

fnjx¼1 ¼ 0; ½ðg2
0 � k1 � 1Þfn

00 þ 2ig0onfn
0 �jx¼1 ¼ 0: (33)

It should be remarked that the boundary conditions derived by Tang et al. [33] missed the terms resulted from the
axially motion.

Eqs. (31) and (32), the differential equations for fn(x) and Wn(x), have the same form. Therefore the solutions of fn(x)
and Wn(x) also have the same form with different constants as

fnðxÞ ¼ C1neib1nx þ C2neib2nx þ C3neib3nx þ C4neib4nx

WnðxÞ ¼ D1neib1nx þ D2neib2nx þ D3neib3nx þ D4neib4nx (34)

Substitution of Eq. (34) into (31) and (33) respectively yields

k2
f

k1
ð1þ k1 � g2

0Þb
4
in �

2k2
f

k1
g0onb

3
in �

1

k1
ðk2 þ k2

f þ k1k2 � k2g2
0Þo

2
n þ ðg

2
0 � 1Þ

� �
b2

in

þ2
k2

k1
o3

n �on

� �
g0bin þ

k2

k1
o4

n �o
2
n ¼ 0; (35)

1 1 1 1

B1n B2n B3n B4n

eib1n eib2n eib3n eib4n

B1neib2n B2neib2n B3neib2n B4neib2n

0
BBBB@

1
CCCCA

C1n

C2n

C3n

C4n

0
BBBB@

1
CCCCA ¼ 0: (36)

where

Bjn ¼ b2
jnð1þ k1 � g2

0Þ � 2bjng0on ðj ¼ 1;2;3;4Þ (37)

For the non-trivial solution of Eq. (36), the determinant of the coefficient matrix must be zero. That is

½eiðb1nþb2nÞ þ eiðb3nþb4nÞ�ðB1n � B2nÞðB3n � B4nÞ � ½e
iðb1nþb3nÞ þ eiðb2nþb4nÞ�ðB1n � B3nÞðB2n � B4nÞ

þ½eiðb2nþb3nÞ þ eiðb1nþb4nÞ�ðB2n � B3nÞðB1n � B4nÞ ¼ 0: (38)

Based on Eqs. (37) and (38), the nth values bjn (j=1, 2, 3, 4) and the corresponding natural frequency on can be calculated
numerically. Using Eq. (34), one can obtain the modal function of the simply supported beam as follow

fnðxÞ ¼ c1 eib1nx �
ðB4n � B1nÞðe

ib3n � eib1n Þ

ðB4n � B2nÞðeib3n � eib2n Þ
eib2nx �

ðB4n � B1nÞðe
ib2n � eib1n Þ

ðB4n � B3nÞðeib2n � eib3n Þ
eib3nx

�

� 1�
ðB4n � B1nÞðe

ib3n � eib1n Þ

ðB4n � B2nÞðeib3n � eib2n Þ
�
ðB4n � B1nÞðe

ib2n � eib1n Þ

ðB4n � B3nÞðeib2n � eib3n Þ

� �
eib4nx

�
(39)

Substitution of Eqs. (30) and (34) into (23) yields,

Djn ¼
ik1bjn

k2
f b

2
jn þ k1 � k2o2

n

Cjn ðj ¼ 1;2;3;4Þ (40)

Further substitution of Eqs. (39) and (40) into (33) leads to

WnðxÞ ¼ c1
ik1b1neib1nx

k2
f b

2
1n þ k1 � k2o2

n

�
ik1b2neib2nx

k2
f b

2
2n þ k1 � k2o2

n

�
ðB4n � B1nÞðe

ib3n � eib1n Þ

ðB4n � B2nÞðeib3n � eib2n Þ

(
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�
ik1b3neib3nx

k2
f b

2
3n þ k1 � k2o2

n

�
ðB4n � B1nÞðe

ib2n � eib1n Þ

ðB4n � B3nÞðeib2n � eib3n Þ
�

ik1b4neib4nx

k2
f b

2
4n þ k1 � k2o2

n

� 1�
ðB4n � B1nÞðe

ib3n � eib1n Þ

ðB4n � B2nÞðeib3n � eib2n Þ
�
ðB4n � B1nÞðe

ib2n � eib1n Þ

ðB4n � B3nÞðeib2n � eib3n Þ

� ��
(41)

3.2. Solvability in summation parametric resonance

If the axial speed variation frequency o approaches the sum of any two natural frequencies of generating autonomous
linear system (23) and (24), summation parametric resonance may occur. A detuning parameter m is introduced to quantify
the deviation of o from onþom, and o is described by

o ¼ on þom þ em (42)

where on and om are, respectively, the nth and the mth natural frequencies of the e0-order system defined by Eqs. (35) and
(38). To investigate summation parametric resonance with the possible contributions of modes not involved in the
resonance, the solutions to Eqs. (23) and (24) are assumed to be expressed by

v0ðx; T0; T1Þ ¼ flðxÞAlðT1Þe
iolT0 þfnðxÞAnðT1Þe

ionT0 þ fmðxÞAmðT1Þe
iomT0 þ cc (43)

j0ðx; T0; T1Þ ¼ WlðxÞBlðT1Þe
iolT0 þ WnðxÞBnðT1Þe

ionT0 þ WmðxÞBmðT1Þe
iomT0 þ cc (44)

Substitution of Eqs. (42), (43) and (44) into (25) and (26) yields

v1;T0T0
þ 2g0v1;xT0

þ ðg2
0 � 1Þv1;xx þ k1ðj1;x � v1;xxÞ

¼ �½Zk1ðiolWl
0 þ g0Wl

00 ÞBl � Zk1ðiolfl
00 þ g0f

000

l ÞAl þ 2ðiolfl þ g0fl
0 Þ _Al�e

iolT0

� Zk1ðiomWm
0 þ g0Wm

00 ÞBm � Zk1ðiomfm
00 þ g0f

000

mÞAm þ 2ðiomfm þ g0fm
0 Þ _Am

n
þ½12g1ðom �onÞfn

0 � ig0g1fn
00 �AneimT1

o
eiomT0

� Zk1ðionWn
0 þ g0Wn

00 ÞBn � Zk1ðionfn
00 þ g0f

000

n ÞAn þ 2ðionfn þ g0fn
0 Þ _An

n
þ½12g1ðon �omÞfm

0 � ig0g1fm
00 �AmeimT1

o
eionT0 þ cc þ NST (45)

k2j1;T0T0
� k2

f j1;xx þ k1ðj1 � v1;xÞ

¼ �f½iZolðk1Wl � k2
f Wl
00 Þ þ g0Zðk1Wl

0 � k2
f W
000

l Þ�Bl � Zk1ðiolfl
0 þ g0fl

00 ÞAl

þ2iolk2Wl
_Blge

iolT0 � f½iZomðk1Wm � k2
f Wm
00 Þ þ g0Zðk1Wm

0 � k2
f W
000

mÞ�Bm

�Zk1ðiomfm
0 þ g0fm

00 ÞAm þ 2iomk2Wm
_Bmge

iomT0 � f½iZonðk1Wn � k2
f Wn
00 Þ

þg0Zðk1Wn
0 � k2

f W
000

n Þ�Bn � Zk1ðionfn
0 þ g0fn

00 ÞAn þ 2ionk2Wn
_Bnge

ionT0 þ cc þ NST (46)

where the dot denotes the derivation with respect to slow time T1, and NST stands for non-secular terms.
It can be checked that the linear part of the mass and stiffness operators in governing Eqs. (27) and (28) are symmetric

and the gyroscopic operator is skew symmetric under the corresponding boundary conditions (29) and (34). The solvability
condition presented by Chen and Zu [38] demands the orthogonal relationships

/Zk1ðiolWl
0 þ g0Wl

00 ÞBl � Zk1ðiolfl
00 þ g0f

000

l ÞAl þ 2ðiolfl þ g0fl
0 Þ _Al;flS ¼ 0 (47a)

/Zk1ðiomWm
0 þ g0Wm

00 ÞBm � Zk1ðiomfm
00 þ g0f

000

mÞAm þ 2ðiomfm þ g0fm
0 Þ _Am

þ½12g1ðom �onÞfn
0 � ig0g1fn

00 �AneimT1 ;fmS ¼ 0 (47b)

/Zk1ðionWn
0 þ g0Wn

00 ÞBn � Zk1ðionfn
00 þ g0f

000

n ÞAn þ 2ðionfn þ g0fn
0 Þ _An

þ½12g1ðon �omÞfm
0 � ig0g1fm

00 �AmeimT1 ;fnS ¼ 0 (47c)

/½iZolðk1Wl � k2
f Wl
00 Þ þ g0Zðk1Wl

0 � k2
f W
000

l Þ�Bl � Zk1ðiolfl
0 þ g0fl

00 ÞAl þ 2iolk2Wl
_Bl;flS ¼ 0 (47d)

/½iZomðk1Wm � k2
f Wm
00 Þ þ g0Zðk1Wm

0 � k2
f W
000

mÞ�Bm � Zk1ðiomfm
0 þ g0fm

00 ÞAm þ 2iomk2Wm
_Bm;fmS ¼ 0 (47e)

/½iZonðk1Wn � k2
f Wn
00 Þ þ g0Zðk1Wn

0 � k2
f W
000

n Þ�Bn � Zk1ðionfn
0 þ g0fn

00 ÞAn þ 2ionk2Wn
_Bn;fnS ¼ 0 (47f)

where the inner product is defined for complex functions f and g on [0,1] as

/f ; gS ¼
Z 1

0
f g dx (48)
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Application of the distributive law of the inner product to Eq. (47) leads to

_Al þ ZmlBl þ ZklAl ¼ 0 (49a)

_Am þ ZmmBm þ ZkmAm þ g1wmnAneimT1 ¼ 0 (49b)

_An þ ZmnBn þ ZknAn þ g1wnmAmeimT1 ¼ 0 (49c)

_Bl þ ZxlBl þ ZzlAl ¼ 0 (49d)

_Bm þ ZxmBm þ ZzmAm ¼ 0 (49e)

_Bn þ ZxnBn þ ZznAn ¼ 0 (49f)

where

mk ¼
k1ðiok

R 1
0 Wk
0 fk dxþ g0

R 1
0 Wk
00 fk dxÞ

2ðiok

R 1
0 fkfk dxþ g0

R 1
0 fk

0 fk dxÞ
ðk ¼ l;m;nÞ (50a)

kk ¼ �
k1ðiok

R 1
0 fk

00 fk dxþ g0

R 1
0 f

000

kfk dxÞ

2ðiok

R 1
0 fkfk dxþ g0

R 1
0 fk

0 fk dxÞ
ðk ¼ l;m;nÞ (50b)

xk ¼
iokðk1

R 1
0 Wkfk dx� k2

f

R 1
0 Wk
00 fk dxÞ þ g0ðk1

R 1
0 Wk
0 fk dx� k2

f

R 1
0 W

000

kfk dxÞ

2iokk2

R 1
0 Wkfk dx

ðk ¼ l;m;nÞ (50c)

zk ¼ �
k1ðiok

R 1
0 fk

0 fk dxþ g0

R 1
0 fk

00 fk dxÞ

2iokk2

R 1
0 Wkfk dx

ðk ¼ l;m;nÞ (50d)

wkj ¼
ðok �ojÞ

R 1
0 fj

0 fk dx� 2ig0

R 1
0 fj

00 fk dx

4ðiok

R 1
0 fkfk dxþ g0

R 1
0 fk

0 fk dxÞ
ðk ¼ n;m; j ¼ m;nÞ (50e)

It can be examined numerically that kk, xk are positive real numbers, and mk, zk are negative real numbers, while wkj is
complex number.

3.3. Solvability in principal parametric resonance

In addition to the summation parametric resonance, the principal parametric resonance may occur if the
variation frequency o approaches two times of a natural frequency of generating autonomous linear system (23) and
(24). In this case, denote

o ¼ 2on þ em (51)

where on is the nth natural frequency of Eqs. (23) and (24). To investigate the principal parametric resonance with
the possible contributions of modes not involved the resonance, the solutions to Eqs. (23) and (24) can be expressed as

v0ðx; T0; T1Þ ¼ flðxÞAlðT1Þe
iolT0 þfnðxÞAnðT1Þe

ionT0 þ cc (52)

j0ðx; T0; T1Þ ¼ WlðxÞBlðT1Þe
iolT0 þ WnðxÞBnðT1Þe

ionT0 þ cc (53)

Substitution of Eqs. (51), (52), (53) into (25) and (26), application of the solvability condition to the resulting equations, and
simplification the outcomes via the properties of the inner product yield

_Al þ ZmlBl þ ZklAl ¼ 0 (54a)

_An þ ZmnBn þ ZknAn þ g1wnAneimT1 ¼ 0 (54b)

_Bl þ ZxlBl þ ZzlAl ¼ 0 (54c)

_Bn þ ZxnBn þ ZznAn ¼ 0 (54d)
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where

mk ¼
k1ðiok

R 1
0 Wk
0 fk dxþ g0

R 1
0 Wk
00 fk dxÞ

2ðiok

R 1
0 fkfk dxþ g0

R 1
0 fk

0 fk dxÞ
ðk ¼ l;nÞ (55a)

kk ¼ �
k1ðiok

R 1
0 fk

00 fk dxþ g0

R 1
0 f

000

kfk dxÞ

2ðiok

R 1
0 fkfk dxþ g0

R 1
0 fk

0 fk dxÞ
ðk ¼ l;nÞ (55b)

xk ¼
iokðk1

R 1
0 Wkfk dx� k2

f

R 1
0 Wk
00 fk dxÞ þ g0ðk1

R 1
0 Wk
0 fk dx� k2

f

R 1
0 W

000

kfk dxÞ

2iokk2

R 1
0 Wkfk dx

ðk ¼ l;nÞ (55c)

zk ¼ �
k1ðiok

R 1
0 fk

0 fk dxþ g0

R 1
0 fk

00 fk dxÞ

2iokk2

R 1
0 Wkfk dx

ðk ¼ l;nÞ (55d)

wn ¼ �
ig0

R 1
0 fn

00 fn dx

2ðion

R 1
0 fnfn dxþ g0

R 1
0 fn

0 fn dxÞ
(55e)

It can be numerically demonstrated that kk, xk are positive real numbers, and mk, zk are negative real numbers, while wn is a
complex number.

3.4. Effects of the mode not involved in resonance

Eq. (49) indicates that the mode not involved in resonance is not coupled with the modes involved in the resonance. The
characteristic equation of Eqs. (49a) and (49d) is

lþ Zkl �Zml

�Zzl lþ Zxl

					
					 ¼ 0 (56)

that is

l2
þ Zðkl þ xlÞlþ Z2klxl � Z2mlzl ¼ 0 (57)

It can be found numerically that l is negative real number. Thus, the solutions to Eqs. (49a) and (49d) decays to zero
exponentially. Therefore, the lth mode has actually no effects on the dynamic stability in summation parametric resonance
of the mth and nth modes. Similarly, it can be demonstrated that the lth mode has no effects on the dynamic stability in
principal parametric resonance of the mth mode.

4. Stability conditions

4.1. Summation parametric resonance

To cast Eqs. (49b), (49c), (49e) and (49f) into an autonomous system, introduce the transformation

AnðT1Þ ¼ anðT1Þe
imT1=2;BnðT1Þ ¼ bnðT1Þe

imT1=2;

AmðT1Þ ¼ amðT1Þe
imT1=2;BmðT1Þ ¼ bmðT1Þe

imT1=2 (58)

Substitution of Eq. (58) into (49b), (49c), (49e) and (49f) yields

_an þ
im
2

an þ Zmnbn þ Zknan þ g1wnmam ¼ 0

_bn þ
im
2

bn þ Zxnbn þ Zznan ¼ 0

_am þ
im
2

am þ Zmmbm þ Zkmam þ g1wmnan ¼ 0

_bm þ
im
2

bm þ Zxmbm þ Zzmam ¼ 0 (59)

Obviously, Eq. (59) has a zero solution. To investigate the stability of the non-zero solutions of Eq. (59), separation of those
solutions into real and imaginary parts as

anðT1Þ ¼ p1ðT1Þ þ iq1ðT1Þ; bnðT1Þ ¼ p2ðT1Þ þ iq2ðT1Þ;

amðT1Þ ¼ p3ðT1Þ þ iq3ðT1Þ; bmðT1Þ ¼ p4ðT1Þ þ iq4ðT1Þ (60)
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where pk(T1) and qk(T1) (k=1,2,3,4) are real functions with respect to T1. Substituting Eq. (60) into (59) and separating the
resulting equations into real and imaginary parts lead to

_p1 ¼ �Zknp1 þ
m
2

q1 � Zmnp2 � g1 ReðwnmÞp3 � g1 ImðwnmÞq3

_q1 ¼ �
m
2

p1 � Zknq1 � Zmnq2 � g1 ImðwnmÞp3 þ g1 ReðwnmÞq3

_p2 ¼ �Zznp1 � Zxnp2 þ
m
2

q2

_q2 ¼ �Zznq1 �
m
2

p2 � Zxnq2 (61a)

_p3 ¼ �g1 ReðwmnÞp1 � g1 ImðwmnÞq1 � Zkmp3 þ
m
2

q3 � Zmmp4

_q3 ¼ �g1 ImðwmnÞp1 þ g1 ReðwmnÞq1 �
m
2

p3 � Zkmq3 � Zmmq4

_p4 ¼ �Zzmp3 � Zxmp4 þ
m
2

q4

_q4 ¼ �Zzmq3 �
m
2

p4 � Zxmq4 (61b)

The characteristic equation of Eq. (61) is

�Zkn � l
m
2

�Zmn 0 �g1RðwnmÞ �g1IðwnmÞ 0 0

�
m
2

�Zkn � l 0 �Zmn �g1IðwnmÞ g1RðwnmÞ 0 0

�Zzn 0 �Zxn � l
m
2

0 0 0 0

0 �Zzn �
m
2

�Zxn � l 0 0 0 0

�g1RðwmnÞ �g1IðwmnÞ 0 0 �Zkm � l
m
2

�Zmm 0

�g1IðwmnÞ g1RðwmnÞ 0 0 �
m
2

�Zkm � l 0 �Zmm

0 0 0 0 �Zzm 0 �Zxm � l
m
2

0 0 0 0 0 �Zzm �
m
2

�Zxm � l

																															

																															

¼ 0 (62)

Direct calculation of the determinant leads to the characteristic equation as

a0l
8
þ a1l

7
þ a2l

6
þ a3l

5
þ a4l

4
þ a5l

3
þ a6l

2
þ a7lþ a8 ¼ 0 (63)

with

a0 ¼ 1 (64a)

a1 ¼ 2Zðkm þ kn þ xm þ xnÞ (64b)

a2 ¼ m2 þ Z2½2ðkm þ kn þ xm þ xnÞ
2
þ 2ðkmkn � zmmm � znmn þ xmxnÞ

þ2ðkm þ knÞðxm þ xnÞ� � 2g2
1½ReðwmmÞReðwnmÞ þ ImðwmnÞImðwnmÞ� (64c)

a3 ¼
3
2Zm

2ðkm þ kn þ xm þ xnÞ þ Z3½2ðkm þ kn þ xm þ xnÞðkmkn � zmmm � znmn þ xmxnÞ

þ2ðkm þ knÞðxm þ xnÞ
2
þ 2ðkm þ knÞ

2
ðxm þ xnÞ � 2zmmmðkn þ xnÞ � 2znmnðkm þ xmÞ

þ2ðkm þ knÞxmxn þ 2ðxm þ xnÞkmkn� � 2Zg2
1½km þ kn þ 2ðxm þ xnÞ�

�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ� (64d)

a4 ¼
3m4

8
þ Z2m2 3

4
ðk2

m þ k
2
n þ x2

m þ x2
nÞ þ 2ðkmkn þ xmxnÞ þ 2ðkm þ knÞðxm þ xnÞ �

1

2
ðzmmm þ znmnÞ

� �

þZ4½ðkmkn þ xmxnÞ
2
þ ðkmxn þ knxmÞ

2
þ ðzmmm þ znmn � kmxm � knxnÞ

2

�4ðzmmm þ znmnÞðkm þ xmÞðkn þ xnÞ � 2ðzmmm � kmxmÞðk2
n � znmn þ 3knxn þ x2

nÞ
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�2znmnðkm þ xmÞ
2
þ 2kmxmðkn þ xnÞ

2
þ 4knxmðk2

m þ x2
nÞ þ 4knxnðk2

m þ x2
nÞ þ 4kmxnðk2

n þ x2
mÞ

þ4kmknðx
2
m þ x2

nÞ þ 4xmxnðk2
m þ k

2
nÞ� þ Zmg

2
1ðkm � knÞ½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ�

�
3

2
m2g2

1½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ� þ 2Z2g2
1½zmmm þ znmn � kmkn � 2xmxn

�ðxm þ xnÞ
2
� 2ðkm þ knÞðxm þ xnÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ� þ g4

1jwmnj
2jwnmj

2 (64e)

a5 ¼
3

8
Zm4ðkm þ kn þ xm þ xnÞ þ Z3m2 ðkm þ xmÞðkmkn � zmmm þ knxmÞ þ ðkn þ xnÞðknxm



þxmxn � znmnÞ þ xm½ðkm þ knÞ

2
þ x2

m þ knxn� þ km½ðxm þ xnÞ
2
þ k2

m þ kmxm�g

þZ5f2ðkn þ xnÞ½ðzmmm þ kmxmÞ
2
� znmnðk2

m þ 4kmxm þ x2
mÞ þ knxnðk2

m � 2zmmm þ x2
mÞ�

þ2ðkm þ xmÞ � ½ðznmn þ knxnÞ
2
� zmmmðk2

n þ 4knxn þ x2
nÞ þ kmxmðk2

n � 2znmn þ x2
nÞ�

þ4ðkm þ kn þ xm þ xnÞðzmmmznmn þ 2kmxmknxnÞg

�2Z2mg2
1½zmmm � znmn � ðkm � knÞðxm þ xnÞ�½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ�

�Zm2g2
1½km þ kn þ 2ðxm þ xnÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

þ2Z3g2
1½zmmmðkm þ xm þ 2xnÞ þ znmnðkn þ xn þ 2xmÞ � 2ðxm þ xnÞðkmkn þ xmxnÞ

�ðkm þ knÞðx
2
m þ 4xmxn þ x2

nÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ� þ 2Zg4
1ðxm þ xnÞjwmnj

2jwnmj
2

(64f)

a6 ¼
m6

16
þ

1

16
Z2m4 3ðk2

m þ k
2
n þ x2

m þ x2
nÞ þ 4½kmkn þ xmxn þ ðkm þ knÞðxm þ xnÞ� þ 2ðzmmm � znmnÞ

n o

þ
1

2
Z4m2 z2

mm
2
m þ k

2
mðkm þ xm þ xnÞ

2
� 2zmmm½2znmn þ xmxnkmðxm � 2xnÞ�

n
þ½xmxn � znmn þ knðxm þ xnÞ�

2 þ 2km½ðknxm þ x2
nÞðkn þ xmÞ þ ðk2

m þ x2
mÞxn

�znmnðkn � 2xm þ xnÞ � zmmmðkn þ xm þ xnÞ�
�
þ Z6 ðzmmm � kmxmÞ½zmmmðk2

n þ x2
nÞ

n
�2ðz2

nm
2
n þ k

2
nx

2
nÞ� � ½2z

2
mm

2
m þ 2k2

mx
2
m � znmnðk2

m þ x2
mÞ�ðznmn � knxnÞ þ k2

mk
2
nðx

2
m þ x2

nÞ

þx2
mx

2
nðk

2
m þ k

2
nÞ þ 4zmmmznmnðkmkn þ kmxm þ knxm þ kmxn þ knxn þ xmxnÞ

�8kmknxmxnðzmmm � znmnÞ � 4ðkm þ xmÞðkn þ xnÞðznmnkmxm � zmmmknxn � kmknxmxnÞ
�

þ
1

2
Zm3g2

1ðkm � knÞ½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ� � Z3mg2
1½zmmmðkn þ xm þ 4xnÞ

�znmnðkm þ xn þ 4xmÞ � ðkm � knÞðx
2
m þ 4xmxn þ x2

nÞ�½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ�

�
3

8
m4g2

1½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ� � Z2m2g2
1ðkm þ xm þ xnÞðkn þ xm þ xnÞ½ReðwmnÞReðwnmÞ

þImðwmnÞImðwnmÞ� � 2Z4g2
1½ðzmmm � kmxnÞðznmn � knxmÞ � 2zmmmxn � ðkn þ xmÞ

�2znmnxmðkm þ xnÞ þ kmknðxm þ xnÞ
2
� znmnx

2
m � zmmmx

2
n þ xmxnðkmkn þ xmxnÞ

þ2xmxnðkm þ knÞðxm þ xnÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

þ
1

2
m2g4

1jwmnj
2jwnmj

2 þ Z2g4
1ðx

2
m þ 4xmxn þ x2

nÞjwmnj
2jwnMj

2 (64g)

a7 ¼
Zm6

32
ðkm þ kn þ xm þ xnÞ þ

Z3m4

8
½ðkm þ knÞðkmkn þ x2

m þ x2
nÞ þ ðxm þ xnÞðxmxn þ k2

m þ k
2
nÞ

�ðzmmm � 2znmnÞðkm þ xmÞ � ðznmn � 2zmmmÞðkn þ xnÞ� þ
Z5m2

2
½ðzmmm � kmxmÞ

2
n

þ2zmmmknxn � znmnðk2
m þ x2

mÞ�ðkn þ xnÞ þ ½ðznmn � knxnÞ
2
þ 2znmnkmxm � zmmmðk2

n þ x2
nÞ�

�ðkm þ xmÞ � 2zmmmznmnðkm þ kn þ xm þ xnÞ
�
� 2Z7ðzmmm � kmxmÞðznmn � knxnÞ �kmknxm



þznmnðkm þ xmÞ þ zmmmðkn þ xnÞ � xn½kmkn þ xmðkm þ knÞ�

�
�

1

2
Z2m3g2

1½zmmm � znmn � ðkm � knÞðxm þ xnÞ�½ImðwmnÞReðwnmÞ � ReðwmmÞImðwnmÞ�

þ2Z4mg2
1½znmnxmðkm þ xm þ xnÞ � zmmmxnðkn þ xn þ xmÞ

þxmxnðkm � knÞðxm þ xnÞ½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ�
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�
1

8
Zm4g2

1½km þ kn þ 2ðxm þ xnÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�
1

2
Z3m2g2

1½2ðznmnxm þ zmmmxnÞ � znmnðkm þ xnÞ � zmmmðkn þ xmÞ

þðkm þ knÞðx
2
m þ x2

nÞ þ 2ðxm þ xnÞðknkm þ xnxmÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�2Z5g2
1½zmmmznmnðxm þ xnÞ � 2xmxnðzmmmkn þ znmnkmÞ � zmmmðkn þ xmÞx

2
n � znmnx

2
m

�ðkm þ xnÞ þ 2knkmxnxmðxm þ xnÞ þ ðkm þ knÞðx
2
m þ x2

nÞ�½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�
1

2
Zm2g4

1ðxm þ xnÞjwmnj
2jwnmj

2 þ 2Z3g4
1xnxmðxm þ xnÞjwmnj

2jwnmj
2 (64h)

a8 ¼
m8

256
þ

1

64
Z2m6ðk2

m þ k
2
n þ 2zmmm þ 2znmn þ x2

m þ x2
nÞ þ

1

16
Z4m4½ðznmn � knxnÞ

2

þðzmmm � kmxmÞ
2
þ ðk2

m þ 2zmmm þ x2
mÞðk

2
n þ 2znmn þ x2

nÞ�

þ
1

4
Z6m2½ðk2

n þ 2znmn þ x2
nÞðzmmm � kmxmÞ

2
þ ðk2

m þ 2zmmm þ x2
mÞðznmn � knxnÞ

2
�

þZ8ðzmmm � kmxmÞ
2
ðznmn � knxnÞ

2
þ

1

16
Zs5g2

1ðkm � knÞ

�½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ� �
1

4
Z3m3g2

1½zmmmðkn þ xmÞ � znmnðkm þ xnÞ

�ðkm � knÞðx
2
m þ x2

nÞ�½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ�

�Z5mg2
1 zmmm½znmnðxm � xnÞ þ x2

nðkn þ xmÞ� � x2
m½x

2
nðkm � knÞ þ znmnðkn þ xmÞ�

n o

�½ImðwmnÞReðwnmÞ � ReðwmnÞImðwnmÞ� �
1

32
m6g2

1½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�
1

8
Z2m4g2

1ðkmkn þ zmmm þ znmn þ x2
m þ x2

nÞ½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�
1

8
Z4m2g2

1 x2
mðznmn þ x2

nÞ þ zmmmðznmn � knxm þ x2
nÞ

n
þkm½knðx

2
m þ x2

nÞ � znmnxn�

o
½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

�2Z6g2
1xmxnðzmmm � kmxmÞðznmn � knxnÞ½ReðwmnÞReðwnmÞ þ ImðwmnÞImðwnmÞ�

þ
1

16
m4g4

1jwmnj
2jwnmj

2 þ
1

4
Z2m2g4

1ðx
2
m þ x2

nÞjwmnj
2jwnmj

2 þ Z4g4
1x

2
mx

2
njwmnj

2jwnmj
2 (64i)

The Routh–Hurvitz criterion gives the sufficient and necessary condition of the stability of non-zero solutions to (61)
as

D1 ¼ a140;D2 ¼
a1 a0

a3 a2

					
					40;D3 ¼

a1 a0 0

a3 a2 a1

a5 a4 a3

							
							40;D4 ¼

a1 a0 0 0

a3 a2 a1 a0

a5 a4 a3 a2

a7 a6 a5 a4

									

									
40;

D5 ¼

a1 a0 0 0 0

a3 a2 a1 a0 0

a5 a4 a3 a2 a1

a7 a6 a5 a4 a3

0 a8 a7 a6 a5

												

												
40;D6 ¼

a1 a0 0 0 0 0

a3 a2 a1 a0 0 0

a5 a4 a3 a2 a1 a0

a7 a6 a5 a4 a3 a2

0 a8 a7 a6 a5 a4

0 0 0 a8 a7 a6

															

															
40;

D7 ¼

a1 a0 0 0 0 0 0

a3 a2 a1 a0 0 0 0

a5 a4 a3 a2 a1 a0 0

a7 a6 a5 a4 a3 a2 a1

0 a8 a7 a6 a5 a4 a3

0 0 0 a8 a7 a6 a5

0 0 0 0 0 a8 a7

																	

																	

40;D8 ¼ a840 (65)
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Inequality (65) means the stability conditions are

jg1jogmin ¼minfgð2Þ; gð3Þ; gð4Þ; gð5Þ; gð6Þ; gð7Þ; gð8Þg (66)

4.2. Principal parametric resonance

The transformation

AnðT1Þ ¼ anðT1Þe
imT1=2;BnðT1Þ ¼ bnðT1Þe

imT1=2 (67)

changes Eqs. (54b) and (54d) into an autonomous system

_an þ
im
2

an þ Zmnbn þ Zknan þ g1wnan ¼ 0

_bn þ
im
2

bn þ Zxnbn þ Zznan ¼ 0 (68)

To investigate the stability of the non-zero solutions of Eq. (68), separate of those solutions into real and imaginary parts as

anðT1Þ ¼ p1ðT1Þ þ iq1ðT1Þ;bnðT1Þ ¼ p2ðT1Þ þ iq2ðT1Þ (69)

where p1(T1), q1(T1), p2(T1), and q2(T1) are real functions with respect to T1. Substituting Eq. (69) into (68) and separating
the resulting equations into real and imaginary parts lead to

p1 ¼ �½Zkn þ g1 ReðwnÞ�p1 þ
m
2
� g1 ImðwnÞ

h i
q1 � Zmnp2

_q1 ¼ �
m
2
þ g1 ImðwnÞ

h i
p1 � ½Zkn � g1 ReðwnÞ�q1 � Zmnq2

_p2 ¼ �Zznp1 � Zxnp2 þ
m
2

q2

_q2 ¼ �Zznq1 �
m
2

p2 � Zxnq2 (70)

The characteristic equation of Eq. (70) is

�Zkn � g1 ReðwnÞ � l
m
2
� g1 ImðwnÞ �Zmn 0

�
m
2
� g1 ImðwnÞ g1 ReðwnÞ � Zkn � l 0 �Zmn

�Zzn 0 �Zxn � l
m
2

0 �Zzn �
m
2

�Zxn � l

															

															
¼ 0 (71)

Direct calculation of the determinant leads to the characteristic equation as

l4
þ a1l

3
þ a2l

2
þ a3lþ a4 ¼ 0 (72)

with

a1 ¼ 2Zðkn þ xnÞ

a2 ¼
m2

2
þ Z2ðk2

n � 2znmn þ 4knxn þ x2
nÞ � g

2
1jwnj

2

a3 ¼
Zm2

2
ðkn þ xnÞ � 2Z3ðznmn � knxnÞðkn þ xnÞ � 2Zxng2

1jwnj
2

a4 ¼
m4

16
þ
Z2m2

4
ðk2

n þ 2znmn þ x2
nÞ þ Z

4ðznkn � mnxnÞ
2
� jwnj

2g2
1

m2

4
þ Z2x2

n

� �
(73)

The Routh–Hurvitz criterion gives the sufficient and necessary condition of the stability of non-zero solutions to (70) as

D1 ¼ a140;D2 ¼
a1 1

a3 a2

					
					40;D3 ¼

a1 1 0

a3 a2 a1

0 a4 a3

							
							40;D4 ¼ a440 (74)
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Fig. 2. Natural frequencies changing with the mean axial speed for different bending stiffness: (a) the first natural frequencies and (b) the second natural

frequencies.

Fig. 3. The effect of viscosity coefficient on the stability boundaries: (a) the summation resonance, (b) the first principal resonance and (c) the second

principal resonance.
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The calculations yield

D2 ¼
1
2Zðkn þ xnÞ m2 þ 4Z2½ðkn þ xnÞ

2
þ knxn � znmn�

n o
� 2Zknjwnj

2g2
1

D3 ¼ 4Z2fZ2ðkn þ xnÞ
2
ðknxn � znmnÞ½m2 þ Z2ðkn þ xnÞ

2
� þ knxnjwnj

4g4
1 þ Z

2ðkn þ xnÞ
2
ðznmn � 2knxnÞjwnj

2g2
1g

D4 ¼
m4

16
þ
Z2m2

4
ðk2

n þ 2znmn þ x2
nÞ þ Z

4ðknxn � znmnÞ
2
� jwnj

2g2
1

m2

4
þ Z2x2

n

� �
(75)

Inequality (74) means the stability conditions are

jg1jogmin ¼ minfgð2Þ; gð3Þ; gð4Þg (76)

where

gð2Þ ¼ 1

2jwnmj
ffiffiffiffiffiffi
kn
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðkn þ xnÞfm2 þ 4Z2½ðkn þ xnÞ

2
þ knxn � znmn�g

q

gð3Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2knxn

p jwnmj½Zðkn þ xnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðkn þ xnÞ

2z2
nm2

n � 4m2knxnðknxn � znmnÞ

q
� Z2ðkn þ xnÞ

2
ðznmn � 2knxnÞ�

1=2

gð4Þ ¼ 1

2jwnmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ 4Z2m2ðk2

n þ 2znmn þ x2
nÞ þ 16Z4ðznkn � mnxnÞ

2

m2 þ 4Z2x2
n

vuut (77)
Fig. 4. The effect of the mean axial speed on the stability boundaries: (a) the summation resonance, (b) the first principal resonance and (c) the second

principal resonance.
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5. Numerical examples

Consider an axially moving viscoelastic Timoshenko beam with A=9�10�3 m2, P=107 N, L=0.3 m, E=169�109 Pa,
G=66�109 Pa, and k=5/6 for different value of J. Eq. (13) k1=71.28 and k2 ¼ 0:006575k2

f . For given values of the
dimensionless mean axial speed g0 and the dimensionless bending stiffness kf, based on Eqs. (37) and (38), the nth
values bjn (j=1, 2, 3, 4) and the corresponding natural frequency on can be calculated numerically for given the set of
parameters. Fig. 2 presents the first and second natural frequencies for different mean axial speed and bending stiffness.
The numerical results indicate that the natural frequencies decrease with the increasing mean axial speed and the
decreasing bending stiffness.

Consider an axially moving viscoelastic Timoshenko beam with k1=71.28, k2=0.0042, kf=0.8, and g0=2. The stability
boundaries for the summation resonance of first two modes and the first and second principal resonances in plane m–g1 for
different viscosity coefficient are shown in Fig. 3. The solid lines denote Z=0.0, the dashed lines denote Z=0.0005, and the
dotted lines denote Z=0.001. The larger viscosity coefficient leads to the larger instability threshold of g1 for given m, and the
smaller instability range of m for given g1. The stability boundaries in the resonance involving higher order modes, such as
the summation resonance and the second principal resonance, are more sensitive to the viscosity coefficient.

Consider an axially moving viscoelastic Timoshenko beam with k1=71.28, k2=0.0042, kf=0.8, and Z=0.0005. The stability
boundaries for the summation resonance of first two modes and the first and second principal resonance in plane m–g1 for
different mean axial speed are shown in Fig. 4. The solid lines denote g0=1.9, the dashed lines denote g0=2.0, and the dotted
lines denote g0=2.1. The decreasing mean axial speed makes the stability boundaries in the summation resonance move
towards the decreasing direction of g1 in plane m–g1 and the instability regions become narrow. However, the tendencies in
the principal resonances are opposite. Physically, a possible explanation is the mean axial speed makes the system
unstable, while, with the use of the material time derivative in the constitutive relation, reflected by Eqs. (5) and (6), the
Fig. 5. The effect of shear deformation on the stability boundaries: (a) the summation resonance, (b) the first principal resonance and (c) the second

principal resonance.
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axial speed also has the effect to increase the damping that makes system stable. As the stability boundaries in the
principal resonances are more sensitive to the viscosity coefficient, the opposite changing tendencies occur.

Consider an axially moving viscoelastic Timoshenko beam with g0=2, k2=0.0042, kf=0.8, and Z=0.0005. The stability
boundaries for the summation resonance of first two modes and the first and second principal resonances in plane m–g1 for
different shear deformation are shown in Fig. 5. The solid lines denote k1=54, the dashed lines denote k1=71.28, and the
dotted lines denote k1=108. Once again, the changing effect of shear deformation leads to the opposite tendencies in the
summation resonance and the principal resonances. In the summation (principal) resonance, the larger shear deformation
effects lead to the smaller (larger) instability threshold of g1 for given m, and the larger (smaller) instability range of m for
given g1.

Consider an axially moving viscoelastic Timoshenko beam with g0=2, k1=71.28, kf=0.8, and Z=0.0005. The stability
boundaries for the summation resonance of first two modes and the first and second principal resonances in plane m–g1 for
different effects of rotary inertia are shown in Fig. 6. The solid lines denote k2=0.0017, the dashed lines denote k2=0.003, and
the dotted lines denote the coefficient is k2=0.0042. In the summation resonance and the second principal resonance,
the larger rotary inertia leads the larger instability threshold, while in the first principal resonance, the changing tendency
is opposite.

Consider an axially moving viscoelastic Timoshenko beam with k1=71.28, k2=0.006575 k2
f , g0=2, and Z=0.0005. The

stability boundaries for the summation resonance of first two modes and the first and second principal resonance in plane
m–g1 for different bending stiffness are shown in Fig. 7. The solid lines denote kf=0.6, the dashed lines denote kf=0.8, and the
dotted lines denote kf=1. The increasing bending stiffness makes the stability boundaries move towards the increasing
direction of g1 in plane m–g1 and the instability regions become narrow. The stability boundaries in the principal
parametric resonances are more sensitive to the stiffness.
Fig. 6. The effect of rotary inertia on the stability boundaries: (a) the summation resonance, (b) the first principal resonance and (c) the second principal

resonance.
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Fig. 7. The effect of kf on the instability region: (a) the summation resonance, (b) the first principal resonance and (c) the second principal resonance.
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In cases above discussed, the stability boundary in the first principal parametric resonance is much lower than that in
the second principal parametric resonance and slightly lower than that in the summation resonance of first two modes.
Therefore, it can be inferred that the instability occurs more possibly in low-order, especially the first order, principal
parametric resonance.

Finally, the results based on the Timoshenko model here are contrasted with those based on the Euler–Bernoulli model
[21]. Consider an axially moving viscoelastic Timoshenko beam with k1=71.28, k2=0.0042, kf=0.8, g0=2.0, and Z=0.0005 and
an axially moving viscoelastic Euler beam with kf=0.8, g0=2.0, and Z=0.0005. The stability boundaries for the summation
resonance of first two modes and the first and second principal resonances in plane m–g1 are shown in Fig. 8. The solid lines
denote the Timoshenko model and the dashed lines denote the Euler–Bernoulli model. In the principal (summation)
resonances, the Timoshenko model leads to the larger (smaller) instability threshold.
6. Conclusions

This paper is devoted to parametric vibration of an axially accelerating beam. The beam, modeled by the Timoshenko
thick beam theory and constituted by the Kelvin model using the material time derivative, moves at an axial speed
fluctuating harmonically about a constant mean speed. The governing equations are derived from the physical laws, the
constitutive relation, and linear geometrical equations. The method of multiple scales is applied to analyze the governing
equation in summation and principal parametric resonances. The Routh–Hurvitz criterion is employed to establish the
sufficient and necessary condition of the stability. Based on the approximate analytical results, numerical evaluations
demonstrate the following conclusions.

(1) If the axial speed variation frequency approaches the sum of any two natural frequencies, instability may occur for
lager enough the axial speed variation amplitude in the summation parametric resonance. The smaller viscosity coefficient,
the smaller mean axial speed, the larger shear deformation effect, the smaller rotary inertia effect, and the smaller bending
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Fig. 8. The comparison of the stability boundaries for different models: (a) the summation resonance, (b) the first principal resonance and (c) the second

principal resonance.
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stiffness lead to the smaller necessary instability threshold of the speed variation amplitude and the larger required
frequency closeness in the summation parametric resonance. The Euler–Bernoulli model leads to the larger instability
threshold in the summation resonances than the Timoshenko model.

(2) If the axial speed variation frequency approaches the 2 times of any natural frequency, instability may occur for lager
enough the axial speed variation amplitude in the principal parametric resonance. The smaller viscosity coefficient, the
larger mean axial speed, the smaller shear deformation effect, and the smaller bending stiffness lead to the smaller
necessary instability threshold of the speed variation amplitude and the larger required frequency closeness in the
principal parametric resonance. The Euler–Bernoulli model leads to the smaller instability threshold in the principal
resonances than the Timoshenko model.

(3) The necessary instability threshold of the speed variation amplitude in the first principal parametric resonance is
much smaller than that in the second principal parametric resonance and slightly smaller than that in the summation
resonance of first two modes.
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